Pular para o conteúdo principal

Os relacionamentos dos elementos com o aço (Como funcionam os laços de amizade entre alguns elementos e no que influencia cada um deles) Parte 2

Molibdênio (Mo)

    O molibdênio aumenta fortemente a profundidade de têmpera característica do aço. É muito usado em combinação com o cromo para aumentar a resistência do aço a altas temperaturas. Esse grupo de aços é referido como aços ao cromo-molibdênio.

       O molibdênio é um metal de transição. O metal puro é de coloração branco prateado e muito duro; além disso, tem um dos pontos de fusão mais altos entre todos os elementos puros. Em pequenas quantidades, é aplicado em diversas ligas metálicas de aço para endurecê-lo e torná-lo resistente à corrosão. Por outro lado, o molibdênio é o único metal da segunda série de transição cuja essencialidade é reconhecida do ponto de vista biológico; é encontrado em algumas enzimas com diferentes funções, concretamente em oxotransferases (função de transferência de elétrons ), como por exemplo a xantina oxidase, e na nitrogenase (função de fixação de nitrogênio molecular).

Silício (Si)

     A função mais comum do silício nos aços é como agente desoxidante. Normalmente aumenta a resistência dos aços, mas quantidades excessivas podem reduzir a ductilidade. Em consumíveis de soldagem é algumas vezes adicionado para aumentar a fluidez do metal de solda.

       Suas propriedades são intermediárias entre as do carbono e o germânio. Na forma cristalina é muito duro e pouco solúvel, apresentando um brilho metálico e uma coloração grisácea. É um elemento relativamente inerte e resistente à ação da maioria dos ácidos; reage com os halogênios e álcalis. O silício transmite mais de 95% dos comprimentos de onda das radiações infravermelhas.

Fósforo (P)

     O fósforo é considerado um elemento residual nocivo nos aços porque reduz fortemente sua ductilidade e tenacidade. Normalmente todo esforço é feito para reduzir o teor de fósforo para os menores níveis possíveis. Entretanto, em alguns aços o fósforo é adicionado em quantidades muito pequenas para aumentar sua resistência.

       O nome ´fósforo´ adquiriu novo significado graças ao químico britânico John Walker, que descobriu um composto que ardia ao ser friccionado contra certas superfícies. Havia nascido o ´fósforo´ comum, colocado à venda por Walker em 7 de abril de 1827. Inicialmente foi um artifício perigoso, pois soltava chispas e costumava queimar as pessoas ou chamuscar sua roupa, até que em 1832 o austríaco J. Siegal conseguiu fabricar os primeiros fósforos de segurança.    

Alumínio (Al)

     O alumínio é basicamente empregado como um agente desoxidante dos aços. Ele pode também ser adicionado em quantidades muito pequenas para controlar o tamanho dos grãos.

      O alumínio é um metal leve, macio e resistente. Possui um aspecto cinza prateado e fosco, devido à fina camada de óxidos que se forma rapidamente quando exposto ao ar. O alumínio não é tóxico como metal, não-magnético, e não cria faíscas quando exposto a atrito. O alumínio puro possui tensão de cerca de 19 megapascais (MPa) e 400 MPa se inserido dentro de uma liga. Sua densidade é aproximadamente de um terço do aço ou cobre. É muito maleável, muito dúctil, apto para a mecanização e fundição, além de ter uma excelente resistência à corrosão e durabilidade devido à camada protetora de óxido. É o segundo metal mais maleável, sendo o primeiro o ouro, e o sexto mais dúctil. Por ser um bom condutor de calor, é muito utilizado em panelas de cozinha.

Cobre (Cu)

      O cobre contribui fortemente para aumentar a resistência à corrosão dos aços carbono pelo retardamento da formação de carepa à temperatura ambiente, porém altos teores de cobre podem causar problemas durante a soldagem.

       O cobre ocupa a mesma família na tabela periódica que a prata e o ouro. Em termos de estrutura eletrônica, o cobre tem um elétron orbital em cima de uma cheia escudo do elétron(o elétron que faz as ligações) , que faz ligações metálicas . A prata e o ouro são semelhantes. O cobre é normalmente fornecido, como quase todos os metais de uso industrial e comercial, em um grão fino de formulário policristalino. Metais policristalinos tem mais força do que monocristalinos formas, e a diferença é maior para o menor grão (de cristal) em tamanho. É facilmente trabalhado, sendo que ambas as propriedades de dúctil e maleável ele tem. A facilidade com que pode ser levado a cabo o torna útil para trabalhos eléctricos, assim como sua alta condutividade elétrica.

       O cobre tem um tom avermelhado, alaranjado ou cor acastanhada devido a uma fina camada de manchas (incluindo óxidos ).O cobre puro é rosa ou cor de pêssego. Cobre junto de ósmio (azulada), césio e de ouro (tanto amarelo) são os únicos quatro metais elementar com uma cor natural que não o cinza ou prata. Cobre resultados cor característica de sua configuração eletrônica.

Nióbio (Nb)

     O nióbio é empregado em aços inoxidáveis austeníticos como estabilizador de carbonetos. Já que o carbono nos aços inoxidáveis diminui a resistência à corrosão, um dos modos de torná-lo ineficaz é a adição de nióbio, que possui maior afinidade pelo carbono que o cromo, deixando este livre para a proteção contra a corrosão.

    O nióbio é um metal dúctil, cinza brilhante, que passa a adquirir uma coloração azulada quando em contato com o ar em temperatura ambiente após um longo período. Suas propriedades químicas são muito semelhantes às do tântalo (elemento químico), que está situado no mesmo grupo.

Tungstênio (W)

      O tungstênio é usado nos aços para dar resistência a altas temperaturas. Ele também forma carbonetos que são extremamente duros e portanto possuem excepcional resistência à abrasão, sendo o metal mais resistente a tração entre todos os metais, em suas forma puras.
      
      O elemento livre é notável pela sua robustez, especialmente pelo fato de possuir o mais alto ponto de fusão de todos os metais e o segundo mais alto entre todos os elementos, a seguir ao carbono. Também notável é a sua alta densidade, 19,3 vezes maior do que a da água, comparável às do urânio e ouro, e muito mais alta (cerca de 1,7 vezes) que a do chumbo. O tungstênio com pequenas quantidades de impurezas é frequentemente frágil e duro, tornando-o difícil de trabalhar. Contudo, o tungstênio muito puro é mais dúctil  e pode ser cortado com uma serra de metais.

   O tungstênio na sua forma impura é um metal de cor branca a cinza, frequentemente frágil e difícil de trabalhar, mas quando puro, pode ser facilmente trabalhado. Pode ser cortado com uma serra de metais, forjado, trefilado, extruído ou sinterizado. Dentre todos os metais na forma pura, o tungstênio tem o mais alto ponto de fusão (3 422 °C), a menor pressão de vapor e (a temperaturas acima de 1 650 °C) a maior resistência à tração. Apresenta o menor coeficiente de expansão térmica entre todos os metais puros. A pequena expansão térmica e os elevados ponto de fusão e resistência do tungstênio devem-se a ligações covalentes fortes formadas entre os átomos de tungstênio pelos elétrons 5d. A ligação de pequenas quantidades de tungstênio com o aço aumenta muito a resistência deste último.

   A forma elementar não combinada é usada sobretudo em aplicações eletrônicas. As muitas ligas de tungstênio têm numerosas aplicações, destacando-se os filamentos de lâmpadas incandescentes, tubos de raios X (como filamento e como alvo), e superligas. A dureza e elevada densidade do tungstênio tornam-no útil em aplicações militares como projéteis penetrantes. Os compostos de tungstênio são geralmente usados industrialmente como catalisadores.

Vanádio (V)

     O vanádio mantém o tamanho de grão pequeno após tratamento térmico. Ele também ajuda a aumentar a profundidade de têmpera e resiste ao amolecimento dos aços durante os tratamentos térmicos de revenimento.

    O vanádio é um metal de transição mole, dúctil de cor cinzenta e brilhante. Apresenta alta resistência ao ataque das base, ao ácido sulfúrico (H2SO4) e ao ácido clorídrico (HCl). É obtido a partir de diversos minerais, até do petróleo. Também pode ser obtido da recuperação do óxido de vanádio em pó procedente de processos de combustão. Tem algumas aplicações nucleares devido a sua baixa captura de nêutrons. É um elemento químico essencial em alguns seres vivos, embora não seja conhecida exatamente a sua função. Nos seus compostos apresenta estados de oxidação +2, +3, +4 e +5.

     É usado para a produção de aços inoxidáveis para instrumentos cirúrgicos e ferramentas, em aços resistentes a corrosão e, misturado com alumínio em ligas de titânio, é empregados em motores de reação. Também, em aços, empregados em eixos de rodas, engrenagens e outros componentes críticos.
  • É um importante estabilizador de carbetos na fabricação de aços.
  • Emprega-se em alguns componentes de reatores nucleares.
  • Forma parte de alguns imãs supercondutores.
  • Alguns compostos de vanádio são utilizados como catalisadores na produção de anidrido maleico e ácido sulfúrico. É muito usado o pentóxido de vanádio, V2O5, empregado em cerâmicas.V.

Nitrogênio (N)

       Usualmente é feito todo esforço para eliminar o hidrogênio, o oxigênio e o nitrogênio dos aços porque sua presença causa fragilidade. O nitrogênio tem a capacidade de formar estruturas austeníticas; por isso, é ocasionalmente adicionado aos aços inoxidáveis austeníticos para reduzir a quantidade de níquel necessária e, portanto, os custos de produção desses aços.

  

  Sumário de elementos de liga 

     Deve ser entendido que a adição de elementos a um metal puro pode influenciar a forma cristalina da liga resultante. Se um metal puro possuir características alotrópicas (capacidade de um metal alterar sua estrutura cristalina) a uma temperatura específica, então essa característica ocorrerá a uma faixa de temperatura no metal ligado, e não a uma determinada temperatura como é típico de metais puros. A faixa à qual a mudança ocorre pode ser estreita ou larga, dependendo das ligas e das quantidades de elementos de liga adicionados. 
      Todas essas transformações induzidas por elementos de liga dependem do aporte térmico e da taxa de resfriamento. Esses fatores são controlados na siderúrgica, mas como a atividade de soldagem envolve aquecimento e resfriamento heterogêneos do metal, é necessário um cuidado especial durante a soldagem de aços de baixa, média e alta liga.

Comentários

Postagens mais visitadas deste blog

Fotos de Arquivos.

um exemplo de como se forjavam espadas antigamente. Como eram as moedas na idade média. Diagrama ttt de um aço ao carbono. Forja antiga Catalã. Alguns aços com denominação ABNT. Um Antigo fole usado pelos ferreiros antigos. Forno conversor de Bessemer, Sheffield, Reino Unido. Diagrama ferro-carbono, com segmentos. Durezas correspondentes em alguns materiais e algumas escalas. Outro diagrama Ferro-Carbono. Exemplo de forja catalã. Um antigo ferreiro, fazendo uma ferradura. Modelo básico de alto-forno. Familia dos materiais metálicos, industrialmente usados.

Um pouco sobre a corrosão

Estima-se que 2% a 4% do PIB (produto interno bruto) mundial é empregado para consertar estruturas afetadas pela corrosão. Grande quantidade de objetos metálicos como: tubulações, pontes, depósitos, edifícios etc., apresentam manchas vermelhas (Fe 2 O 3 ) que aumentam de tamanho e transformam em furos pequenos depois grandes. Todo dinheiro que custou a produção dos metais se transformam espontaneamente em óxidos. Dependendo do tipo de ação do meio corrosivo sobre o material, os processos corrosivos podem ser classificados em dois grandes grupos, abrangendo todos os casos de deterioração por corrosão metálica: • Corrosão Química : estes processos são menos frequentes na natureza. • Corrosão eletroquímica :  é a remoção de elétrons de um átomo (este sofre oxidação), por um outro átomo (este sofre redução).    Existe transferência de elétrons de uma espécie química para outra. OXIDAÇÃO :   O átomo perde ou cede elétrons. (Responsável pelo desgaste do metal):            

Historia da metalurgia

~~ Um resumo histórico da metalurgia ~~         Segundo alguns autores, Marques e Fernandes (2012) a história da metalurgia passa por diversas fases em muitos lugares do mundo. Como pode ser ressaltado no documentário delas que mostram alguns dos mais importantes durante o desenvolvimento desta ciência no decorrer do tempo: [...] De modo a fazer-se uma distinção entre a era moderna e a era neolítica (Idade da Pedra), os arqueólogos tiveram necessidade de classificar os estádios de desenvolvimento das civilizações em Idade do Cobre, Idade do Bronze e Idade do Ferro. Os povos que melhor dominavam as técnicas de processamento e extracção de metais, foram os que se suplantaram e se destacaram dos outros, tanto em nível de melhores condições de vida, como em vitórias nas batalhas, dando assim origem aos grandes impérios que existiram. [...].                 Ainda por relato dos arqueólogos e historiadores que se em